Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 35(2): br5, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991903

RESUMO

Loss of cell polarity and disruption of tissue organization are key features of tumorigenesis that are intrinsically linked to spindle orientation. Epithelial tumors are often characterized by spindle orientation defects, but how these defects impact tumor formation driven by common oncogenic mutations is not fully understood. Here, we examine the role of spindle orientation in adult epidermis by deleting a key spindle regulator, LGN, in normal tissue and in a PTEN-deficient mouse model. We report that LGN deficiency in PTEN mutant epidermis leads to a threefold increase in the likelihood of developing tumors on the snout, and an over 10-fold increase in tumor burden. In this tissue, loss of LGN alone increases perpendicular and oblique divisions of epidermal basal cells, at the expense of a planar orientation of division. PTEN loss alone does not significantly affect spindle orientation in these cells, but the combined loss of PTEN and LGN fully randomizes basal spindle orientation. A subset of LGN- and PTEN-deficient animals have increased amounts of proliferative spinous cells, which may be associated with tumorigenesis. These results indicate that loss of LGN impacts spindle orientation and accelerates epidermal tumorigenesis in a PTEN-deficient mouse model.


Assuntos
Epiderme , Fuso Acromático , Animais , Camundongos , Fuso Acromático/genética , Células Epidérmicas , Carcinogênese , Polaridade Celular/genética
2.
Elife ; 122023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36880644

RESUMO

Stem cell differentiation requires dramatic changes in gene expression and global remodeling of chromatin architecture. How and when chromatin remodels relative to the transcriptional, behavioral, and morphological changes during differentiation remain unclear, particularly in an intact tissue context. Here, we develop a quantitative pipeline which leverages fluorescently-tagged histones and longitudinal imaging to track large-scale chromatin compaction changes within individual cells in a live mouse. Applying this pipeline to epidermal stem cells, we reveal that cell-to-cell chromatin compaction heterogeneity within the stem cell compartment emerges independent of cell cycle status, and instead is reflective of differentiation status. Chromatin compaction state gradually transitions over days as differentiating cells exit the stem cell compartment. Moreover, establishing live imaging of Keratin-10 (K10) nascent RNA, which marks the onset of stem cell differentiation, we find that Keratin-10 transcription is highly dynamic and largely precedes the global chromatin compaction changes associated with differentiation. Together, these analyses reveal that stem cell differentiation involves dynamic transcriptional states and gradual chromatin rearrangement.


Assuntos
Cromatina , Queratina-10 , Animais , Camundongos , Queratina-10/genética , Queratina-10/metabolismo , Histonas/metabolismo , Diferenciação Celular/genética , Células-Tronco/metabolismo
3.
Nat Cell Biol ; 24(12): 1692-1700, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36357619

RESUMO

Highly regenerative tissues continuously produce terminally differentiated cells to replace those that are lost. How they orchestrate the complex transition from undifferentiated stem cells towards post-mitotic, molecularly distinct and often spatially segregated differentiated populations is not well understood. In the adult skin epidermis, the stem cell compartment contains molecularly heterogeneous subpopulations1-4 whose relationship to the complete trajectory of differentiation remains unknown. Here we show that differentiation, from commitment to exit from the stem cell layer, is a multi-day process wherein cells transit through a continuum of transcriptional changes with upregulation of differentiation genes preceding downregulation of typical stemness genes. Differentiation-committed cells remain capable of dividing to produce daughter cells fated to further differentiate, demonstrating that differentiation is uncoupled from cell cycle exit. These cell divisions are not required as part of an obligate transit-amplifying programme but help to buffer the differentiating cell pool during heightened demand. Thus, instead of distinct contributions from multiple progenitors, a continuous gradual differentiation process fuels homeostatic epidermal turnover.


Assuntos
Células-Tronco , Divisão Celular , Ciclo Celular/genética , Diferenciação Celular
4.
PLoS Comput Biol ; 18(9): e1010477, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067226

RESUMO

Robustness in developing and homeostatic tissues is supported by various types of spatiotemporal cell-to-cell interactions. Although live imaging and cell tracking are powerful in providing direct evidence of cell coordination rules, extracting and comparing these rules across many tissues with potentially different length and timescales of coordination requires a versatile framework of analysis. Here we demonstrate that graph neural network (GNN) models are suited for this purpose, by showing how they can be applied to predict cell fate in tissues and utilized to infer the cell interactions governing the multicellular dynamics. Analyzing the live mammalian epidermis data, where spatiotemporal graphs constructed from cell tracks and cell contacts are given as inputs, GNN discovers distinct neighbor cell fate coordination rules that depend on the region of the body. This approach demonstrates how the GNN framework is powerful in inferring general cell interaction rules from live data without prior knowledge of the signaling involved.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Animais , Rastreamento de Células , Mamíferos
5.
Nat Cell Biol ; 23(5): 476-484, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33958758

RESUMO

Organs consist of multiple cell types that ensure proper architecture and function. How different cell types coexist and interact to maintain their homeostasis in vivo remains elusive. The skin epidermis comprises mostly epithelial cells, but also harbours Langerhans cells (LCs) and dendritic epidermal T cells (DETCs). Whether and how distributions of LCs and DETCs are regulated during homeostasis is unclear. Here, by tracking individual cells in the skin of live adult mice over time, we show that LCs and DETCs actively maintain a non-random spatial distribution despite continuous turnover of neighbouring basal epithelial cells. Moreover, the density of epithelial cells regulates the composition of LCs and DETCs in the epidermis. Finally, LCs require the GTPase Rac1 to maintain their positional stability, density and tiling pattern reminiscent of neuronal self-avoidance. We propose that these cellular mechanisms provide the epidermis with an optimal response to environmental insults.


Assuntos
Células Epidérmicas/citologia , Epiderme/metabolismo , Pele/citologia , Linfócitos T/imunologia , Animais , Células Epidérmicas/imunologia , Epiderme/imunologia , Homeostase/imunologia , Homeostase/fisiologia , Junções Intercelulares/patologia , Camundongos Transgênicos , Pele/imunologia
6.
Dev Biol ; 455(2): 382-392, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31315026

RESUMO

Estrogen related receptor beta (Esrrb) is an orphan nuclear receptor that is required for self-renewal and pluripotency in mouse embryonic stem (ES) cells. However, in the early post-implantation mouse embryo, Esrrb is specifically expressed in the extraembryonic ectoderm (ExE) and plays a crucial role in trophoblast development. Previous studies showed that Esrrb is also required to maintain trophoblast stem (TS) cells, the in vitro stem cell model of the early trophoblast lineage. In order to identify regulatory targets of Esrrb in vivo, we performed microarray analysis of Esrrb-null versus wild-type post-implantation ExE, and identified 30 genes down-regulated in Esrrb-mutants. Among them is Bmp4, which is produced by the ExE and known to be critical for primordial germ cell (PGC) specification in vivo. We further identified an enhancer region bound by Esrrb at the Bmp4 locus by performing Esrrb ChIP-seq and luciferase reporter assay using TS cells. Finally, we established a knockout mouse line in which the enhancer region was deleted using CRISPR/Cas9 technology. Both Esrrb-null embryos and enhancer knockout embryos expressed lower levels of Bmp4 in the ExE, and had reduced numbers of PGCs. These results suggested that Esrrb functions as an upstream factor of Bmp4 in the ExE, regulating proper PGC development in mice.


Assuntos
Desenvolvimento Embrionário , Células Germinativas , Receptores de Estrogênio/fisiologia , Animais , Proteína Morfogenética Óssea 4/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ectoderma/embriologia , Elementos Facilitadores Genéticos , Camundongos , Camundongos Knockout , Análise Serial de Proteínas
7.
Curr Opin Cell Biol ; 60: 84-91, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31153058

RESUMO

Epithelia surround our bodies and line most of our organs. Intrinsic homeostatic mechanisms replenish and repair these tissues in the face of wear and tear, wounds, and even the presence of accumulating mutations. Recent advances in cell biology, genetics, and live-imaging techniques have revealed that epithelial homeostasis represents an intrinsically flexible process at the level of individual epithelial cells. This homeostatic flexibility has important implications for how we think about the more dramatic cell plasticity that is frequently thought to be associated with pathological settings. In this review, we will focus on key emerging mechanisms and processes of epithelial homeostasis and elaborate on the known molecular mechanisms of epithelial cell interactions to illuminate how epithelia are maintained throughout an organism's lifetime.


Assuntos
Epitélio/fisiologia , Homeostase , Animais , Carcinogênese/genética , Humanos , Mutação/genética , Cicatrização
8.
Cell Stem Cell ; 23(5): 677-686.e4, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30269903

RESUMO

Maintenance of adult tissues depends on sustained activity of resident stem cell populations, but the mechanisms that regulate stem cell self-renewal during homeostasis remain largely unknown. Using an imaging and tracking approach that captures all epidermal stem cell activity in large regions of living mice, we show that self-renewal is locally coordinated with epidermal differentiation, with a lag time of 1 to 2 days. In both homeostasis and upon experimental perturbation, we find that differentiation of a single stem cell is followed by division of a direct neighbor, but not vice versa. Finally, we show that exit from the stem cell compartment is sufficient to drive neighboring stem cell self-renewal. Together, these findings establish that epidermal stem cell self-renewal is not the constitutive driver of homeostasis. Instead, it is precisely tuned to tissue demand and responds directly to neighbor cell differentiation.


Assuntos
Diferenciação Celular , Células Epidérmicas/citologia , Homeostase , Células-Tronco/citologia , Animais , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Feminino , Masculino , Camundongos , Células-Tronco/metabolismo
9.
Elife ; 62017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28742026

RESUMO

Embryonic stem (ES) cells go though embryo-like cell cycles regulated by specialized molecular mechanisms. However, it is not known whether there are ES cell-specific mechanisms regulating mitotic fidelity. Here we showed that Autoimmune Regulator (Aire), a transcription coordinator involved in immune tolerance processes, is a critical spindle-associated protein in mouse ES(mES) cells. BioID analysis showed that AIRE associates with spindle-associated proteins in mES cells. Loss of function analysis revealed that Aire was important for centrosome number regulation and spindle pole integrity specifically in mES cells. We also identified the c-terminal LESLL motif as a critical motif for AIRE's mitotic function. Combined maternal and zygotic knockout further revealed Aire's critical functions for spindle assembly in preimplantation embryos. These results uncovered a previously unappreciated function for Aire and provide new insights into the biology of stem cell proliferation and potential new angles to understand fertility defects in humans carrying Aire mutations.


Assuntos
Divisão Celular , Células-Tronco Embrionárias/fisiologia , Células-Tronco Embrionárias Murinas/fisiologia , Fuso Acromático/metabolismo , Fatores de Transcrição/metabolismo , Animais , Técnicas de Inativação de Genes , Camundongos , Ligação Proteica
11.
Nat Cell Biol ; 19(2): 155-163, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28248302

RESUMO

Tissue repair is fundamental to our survival as tissues are challenged by recurrent damage. During mammalian skin repair, cells respond by migrating and proliferating to close the wound. However, the coordination of cellular repair behaviours and their effects on homeostatic functions in a live mammal remains unclear. Here we capture the spatiotemporal dynamics of individual epithelial behaviours by imaging wound re-epithelialization in live mice. Differentiated cells migrate while the rate of differentiation changes depending on local rate of migration and tissue architecture. Cells depart from a highly proliferative zone by directionally dividing towards the wound while collectively migrating. This regional coexistence of proliferation and migration leads to local expansion and elongation of the repairing epithelium. Finally, proliferation functions to pattern and restrict the recruitment of undamaged cells. This study elucidates the interplay of cellular repair behaviours and consequent changes in homeostatic behaviours that support tissue-scale organization of wound re-epithelialization.

12.
Curr Opin Cell Biol ; 43: 30-37, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27474806

RESUMO

Stem cells are essential for both tissue maintenance and injury repair, but many aspects of stem cell biology remain incompletely understood. Recent advances in live imaging technology have allowed the direct visualization and tracking of a wide variety of tissue-resident stem cells in their native environments over time. Results from these studies have helped to resolve long-standing debates about stem cell regulation and function while also revealing previously unanticipated phenomena that raise new questions for future work. Here we review recent discoveries of both types, with a particular emphasis on how stem cells behave and interact with their niches during homeostasis, as well as how these behaviours change in response to wounding.


Assuntos
Imageamento Tridimensional , Células-Tronco/citologia , Animais , Carcinogênese/patologia , Proliferação de Células , Humanos , Nicho de Células-Tronco , Cicatrização
13.
Biol Reprod ; 94(5): 102, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26985001

RESUMO

Reproduction depends on the generation of healthy oocytes. Improving therapeutic strategies to prolong or rescue fertility depends on identifying the inter- and intracellular mechanisms that direct oocyte development under physiological conditions. Growth and proliferation of multiple cell types is regulated by the Hippo signaling pathway, whose chief effectors are the transcriptional co-activator YAP and its paralogue WWTR1. To resolve conflicting results concerning the potential role of Hippo in mammalian oocyte development, we systematically investigated the expression and localization of YAP in mouse oocytes. We report that that YAP is expressed in the germ cells beginning as early as Embryonic Day 15.5 and subsequently throughout pre- and postnatal oocyte development. However, YAP is restricted to the cytoplasm at all stages. YAP is phosphorylated at serine-112 in growing and fully grown oocytes, identifying a likely mechanistic basis for its nuclear exclusion, and becomes dephosphorylated at this site during meiotic maturation. Phosphorylation at serine-112 is regulated by a mechanism dependent on cyclic AMP and protein kinase A, which is known to be active in oocytes prior to maturation. Growing oocytes also contain a subpopulation of YAP, likely dephosphorylated, that is able enter the oocyte nucleus, but it is not retained there, implying that oocytes lack the cofactors required to retain YAP in the nucleus. Thus, although YAP is expressed throughout oocyte development, phosphorylation-dependent and -independent mechanisms cooperate to ensure that it does not accumulate in the nucleus. We conclude that nuclear YAP does not play a significant physiological role during oocyte development in mammals.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Oogênese/fisiologia , Fosfoproteínas/metabolismo , Transporte Ativo do Núcleo Celular/genética , Animais , Bovinos , Proteínas de Ciclo Celular , Citoplasma/metabolismo , Feminino , Masculino , Camundongos , Oócitos/fisiologia , Gravidez , Transporte Proteico/genética , Transdução de Sinais , Proteínas de Sinalização YAP
14.
Dev Cell ; 30(4): 410-22, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25127056

RESUMO

The first lineage choice in mammalian embryogenesis is that between the trophectoderm, which gives rise to the trophoblast of the placenta, and the inner cell mass, from which is derived the embryo proper and the yolk sac. The establishment of these lineages is preceded by the inside-versus-outside positioning of cells in the early embryo and stochastic expression of key transcription factors, which is then resolved into lineage-restricted expression. The regulatory inputs that drive this restriction and how they relate to cell position are largely unknown. Here, we show an unsuspected role of Notch signaling in regulating trophectoderm-specific expression of Cdx2 in cooperation with TEAD4. Notch activity is restricted to outer cells and is able to influence positional allocation of blastomeres, mediating preferential localization to the trophectoderm. Our results show that multiple signaling inputs at preimplantation stages specify the first embryonic lineages.


Assuntos
Blastocisto/metabolismo , Linhagem da Célula , Ectoderma/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Notch1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Blastocisto/citologia , Fator de Transcrição CDX2 , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ectoderma/citologia , Ectoderma/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Via de Sinalização Hippo , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptor Notch1/genética , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Transcrição Gênica
15.
Development ; 140(14): 2961-71, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23760955

RESUMO

In mice and humans the X-chromosomal porcupine homolog (Porcn) gene is required for the acylation and secretion of all 19 Wnt ligands and thus represents a bottleneck for all Wnt signaling. We have generated a mouse line carrying a floxed allele for Porcn and used zygotic, oocyte-specific and visceral endoderm-specific deletions to investigate embryonic and extra-embryonic requirements for Wnt ligand secretion. We show that there is no requirement for Porcn-dependent secretion of Wnt ligands during preimplantation development of the mouse embryo. Porcn-dependent Wnts are first required for the initiation of gastrulation, where Porcn function is required in the epiblast but not the visceral endoderm. Heterozygous female embryos, which are mutant in both trophoblast and visceral endoderm due to imprinted X chromosome inactivation, complete gastrulation but display chorio-allantoic fusion defects similar to Wnt7b mutants. Our studies highlight the importance of Wnt3 and Wnt7b for embryonic and placental development but suggest that endogenous Porcn-dependent Wnt secretion does not play an essential role in either implantation or blastocyst lineage specification.


Assuntos
Gastrulação , Proteínas de Membrana/metabolismo , Via de Sinalização Wnt , Aciltransferases , Animais , Blastocisto/metabolismo , Membrana Corioalantoide/metabolismo , Embrião de Mamíferos/metabolismo , Endoderma/metabolismo , Proteínas de Membrana/genética , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt3/genética , Proteína Wnt3/metabolismo , Zigoto/metabolismo
16.
Curr Biol ; 23(13): 1195-201, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23791728

RESUMO

During mammalian development, the first two lineages to be specified are the trophectoderm (TE) and the inner cell mass (ICM). The Hippo pathway kinases Lats 1 and 2 (Lats1/2) and the transcriptional coactivator Yap play important roles in this specification process [1]. In outside cells of the embryo, Yap is nuclear localized and cooperates with Tead4 to induce the TE-specifying transcription factor Cdx2. In inside cells, Lats1/2 phosphorylate Yap and prevent its nuclear localization. The factors acting upstream of Lats1/2 and Yap in this context have not been identified. Here, we demonstrate that the upstream Hippo pathway member Nf2/Merlin is required for Lats1/2-dependent Yap phosphorylation in the preimplantation embryo. Injection of dominant-negative Nf2 mRNA causes Yap mislocalization and ectopic Cdx2 expression, effects that can be rescued by overexpression of Lats2 kinase. Zygotic Nf2 mutant blastocysts have mild defects in Yap localization and Cdx2 expression, but these become much more severe upon removal of both maternal and zygotic Nf2. The inside cells of maternal-zygotic mutants fail to establish a pluripotent ICM and form excess TE, resulting in peri-implantation lethality. Together, these data establish a clear role for Nf2 upstream of Yap in the preimplantation embryo and demonstrate that Hippo signaling is essential to segregate the ICM from the TE.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação da Expressão Gênica no Desenvolvimento , Neurofibromina 2/genética , Fosfoproteínas/genética , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Blastocisto/metabolismo , Fator de Transcrição CDX2 , Proteínas de Ciclo Celular , Via de Sinalização Hippo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Neurofibromina 2/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Reação em Cadeia da Polimerase , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP
17.
Cell ; 152(5): 1008-20, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23452850

RESUMO

Metazoan evolution involves increasing protein domain complexity, but how this relates to control of biological decisions remains uncertain. The Ras guanine nucleotide exchange factor (RasGEF) Sos1 and its adaptor Grb2 are multidomain proteins that couple fibroblast growth factor (FGF) signaling to activation of the Ras-Erk pathway during mammalian development and drive embryonic stem cells toward the primitive endoderm (PrE) lineage. We show that the ability of Sos1/Grb2 to appropriately regulate pluripotency and differentiation factors and to initiate PrE development requires collective binding of multiple Sos1/Grb2 domains to their protein and phospholipid ligands. This provides a cooperative system that only allows lineage commitment when all ligand-binding domains are occupied. Furthermore, our results indicate that the interaction domains of Sos1 and Grb2 have evolved so as to bind ligands not with maximal strength but with specificities and affinities that maintain cooperativity. This optimized system ensures that PrE lineage commitment occurs in a timely and selective manner during embryogenesis.


Assuntos
Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteína Adaptadora GRB2/metabolismo , Proteína SOS1/metabolismo , Sequência de Aminoácidos , Animais , Linhagem da Célula , Endoderma/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo
19.
Dev Cell ; 19(6): 831-44, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21145499

RESUMO

The Hippo pathway senses cell density information to control tissue growth by regulating the localization of the transcriptional regulators TAZ and YAP (TAZ/YAP). TAZ/YAP also regulate TGF-ß-SMAD signaling, but whether this role is linked to cell density sensing is unknown. Here we demonstrate that TAZ/YAP dictate the localization of active SMAD complexes in response to cell density-mediated formation of polarity complexes. In high-density cell cultures, the Hippo pathway drives cytoplasmic localization of TAZ/YAP, which sequesters SMAD complexes, thereby suppressing TGF-ß signaling. We show that during mouse embryogenesis, this is reflected by differences in TAZ/YAP localization, which define regions of active SMAD2/3 complexes. Interfering with TAZ/YAP phosphorylation drives nuclear accumulation of TAZ/YAP and SMAD2/3. Furthermore, we demonstrate that the Crumbs polarity complex interacts with TAZ/YAP, which relays cell density information by promoting TAZ/YAP phosphorylation, cytoplasmic retention, and suppressed TGF-ß signaling. Accordingly, disruption of the Crumbs complex enhances TGF-ß signaling and predisposes cells to TGF-ß-mediated epithelial-to-mesenchymal transitions.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Proteínas Smad/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Transporte Ativo do Núcleo Celular , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Sequência de Bases , Blastocisto/metabolismo , Contagem de Células , Proteínas de Ciclo Celular , Células Cultivadas , Feminino , Técnicas de Silenciamento de Genes , Técnicas In Vitro , Camundongos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , Gravidez , RNA Interferente Pequeno/genética , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Proteínas de Sinalização YAP
20.
J Clin Invest ; 120(4): 995-1003, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20364097

RESUMO

Mammalian preimplantation development, which is the period extending from fertilization to implantation, results in the formation of a blastocyst with three distinct cell lineages. Only one of these lineages, the epiblast, contributes to the embryo itself, while the other two lineages, the trophectoderm and the primitive endoderm, become extra-embryonic tissues. Significant gains have been made in our understanding of the major events of mouse preimplantation development, and recent discoveries have shed new light on the establishment of the three blastocyst lineages. What is less clear, however, is how closely human preimplantation development mimics that in the mouse. A greater understanding of the similarities and differences between mouse and human preimplantation development has implications for improving assisted reproductive technologies and for deriving human embryonic stem cells.


Assuntos
Blastocisto/fisiologia , Animais , Divisão Celular , Linhagem da Célula , Polaridade Celular , Desenvolvimento Embrionário , Endoderma/citologia , Fatores de Crescimento de Fibroblastos/fisiologia , Camadas Germinativas/citologia , Humanos , Camundongos , Células-Tronco/citologia , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA